Abstract

Review Article

The Bacterial Heterotrimeric Amidotransferase GatCAB: functions, structures and mechanism-based inhibitors

Van Hau Pham* and Jacques Lapointe

Published: 01 May, 2017 | Volume 1 - Issue 1 | Pages: 021-032

tRNA-dependent amidotransferases (AdT) are essential enzymes for protein biosynthesis in many bacteria and in all archaea. As AdT is essential for a number of pathogenic bacteria, and it is absent from mammalian cytoplasm, it is considered as a putative target for novel inhibitors that could be lead compounds to develop a new class of antibiotics. Besides GatFAB of Saccharomyces cerevisiae mitochondria and GatAB of Plasmodium falciparum apicoplast, all reported AdT can be divided into two groups: heterodimeric GatDE and heterotrimeric GatCAB. The latter is required to catalyze the conversion of Glu-tRNAGln and/or Asp-tRNAAsn into Gln-tRNAGln and/or Asn-tRNAAsn in many pathogenic bacteria. Recently determined high resolution crystal structures of several GatCAB could be used to design new inhibitors. In this review, we highlight the essential role of AdT for the faithful translation of glutamine and/or asparagine codons, we describe important features of the crystal structures of several GatCAB as well as tRNA/AdT/aaRS complexes for the formation of Gln-tRNAAsn and Asn-tRNAAsn, we finally summarize discoveries of AdT inhibitors based on their analogy to glutamine, adesosine tripoliphosphate and 3’-end of tRNA.

Read Full Article HTML DOI: 10.29328/journal.hjb.1001003 Cite this Article Read Full Article PDF

References

  1. Sheppard K, Akochy PM, Salazar JC, Söll D. The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln. J Biol Chem. 2007; 282: 11866-11873. Ref.: https://goo.gl/dfgopk
  2. Chang KM, Hendrickson TL. Recognition of tRNAGln by Helicobacter pylori GluRS2--a tRNAGln-specific glutamyl-tRNA synthetase. Nucleic Acids Res. 2009; 37: 6942-6949. Ref.: https://goo.gl/vFSjrB
  3. Wu J, Bu W, Sheppard K, Kitabatake M, Kwon ST, et al. Insights into tRNA-Dependent Amidotransferase Evolution and Catalysis from the Structure of the Aquifex aeolicus Enzyme. J Mol Biol. 2009; 391: 703-716. Ref.: https://goo.gl/0IEr7c
  4. Curnow AW, Hong Kw, Yuan R, Kim Si, Martins O, et al. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci U S A, 1997; 94: 11819-11826. Ref.: https://goo.gl/VtHKqn
  5. Nakamura A, Sheppard K, Yamane J, Yao M, Söll D, et al. Two distinct regions in Staphylococcus aureus GatCAB guarantee accurate tRNA recognition. Nucleic Acids Res. 2010; 38: 672-682. Ref.: https://goo.gl/Oz1r7J
  6. Nakamura A, Yao M, Chimnaronk S, Sakai N, Tanaka I. Ammonia Channel Couples Glutaminase with Transamidase Reactions in GatCAB. Science. 2006; 312: 1954-1958. Ref.: https://goo.gl/VTTBFo
  7. Sheppard K, Yuan J, Hohn MJ, Jester B, Devine KM, et al. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res. 2008; 36: 1813-1825. Ref.: https://goo.gl/i0x0fN
  8. Huot JL, Jacques Lapointe, Robert Chênevert, Marc Bailly, Daniel Kern. 5.14-Glutaminyl-tRNA and Asparaginyl-tRNA Biosynthetic Pathways. Elsevier. 2010; 383-431. Ref.: https://goo.gl/ZwhxGb
  9. Araiso Y, Huot JL, Sekiguchi T, Frechin M, Fischer F, et al. Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases. Nucleic Acids Res. 2014; 42: 6052-6063. Ref.: https://goo.gl/pZmBNq
  10. Frechin M, Senger B, Brayé M, Kern D, Martin RP, et al. Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev. 2009; 23: 1119-1130. Ref.: https://goo.gl/QqkouY
  11. Mailu BM, Arthur J, Nelson TM, Ramasamy G, Fritz-Wolf K, et al. Plasmodium Apicoplast Gln-tRNAGln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites. J Biol Chem, 2015; 290: 29629-29641. Ref.: https://goo.gl/gaHBGQ
  12. Shin S, Yun YS, Koo HM, Kim YS, Choi KY, et al. Characterization of a Novel Ser-cisSer-Lys Catalytic Triad in Comparison with the Classical Ser-His-Asp Triad. J Biol Chem. 2003; 278: 24937-24943. Ref.: https://goo.gl/lkXkIV
  13. Deniziak M, Sauter C, Becker HD, Paulus CA, Giegé R, et al. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation. Nucleic Acids Res. 2007; 35: 1421-1431. Ref.: https://goo.gl/QHkb2F
  14. Bailly M, Blaise M, Lorber B, Becker HD, Kern D. The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. Mol Cell. 2007; 28: 228-239. Ref.: https://goo.gl/yYxtDv
  15. Silva GN, Fatma S, Floyd AM, Fischer F, Chuawong P, et al. A tRNA-independent mechanism for transamidosome assembly promotes aminoacyl-tRNA transamidation. J Biol Chem. 2013; 288: 3816-3822. Ref.: https://goo.gl/MTFWiy
  16. Rampias T, Sheppard K, Soll D. The archaeal transamidosome for RNA-dependent glutamine biosynthesis. Nucleic Acids Res. 2010; 38: 5774-5783. Ref.: https://goo.gl/ed5tXy
  17. Blaise M, Bailly M, Frechin M, Behrens MA, Fischer F, et al. Crystal structure of a transfer-ribonucleoprotein particle that promotes asparagine formation. EMBO J. 2010; 29: 3118-3129. Ref.: https://goo.gl/f5bUIx
  18. Suzuki T, Yamashita K, Tanaka Y, Tanaka I, Yao M. Crystallization and preliminary X-ray crystallographic analysis of a bacterial Asn-transamidosome. Acta Crystallogr F Struct Biol Commun. 2014; 70: 790-793. Ref.: https://goo.gl/KzGbS9
  19. Huot JL, Fischer F, Corbeil J, Madore E, Lorber B, et al. Gln-tRNAGln synthesis in a dynamic transamidosome from Helicobacter pylori, where GluRS2 hydrolyzes excess Glu-tRNAGln. Nucleic Acids Res. 2011; 39: 9306-9315. Ref.: https://goo.gl/w0Z72h
  20. Suzuki T, Nakamura A, Kato K, Söll D, Tanaka I, et al. Structure of the Pseudomonas aeruginosa transamidosome reveals unique aspects of bacterial tRNA-dependent asparagine biosynthesis. Proc Natl Acad Sci U S A. 2015; 112: 382-387. Ref.: https://goo.gl/rtlp1N
  21. Ito T, Yokoyama S. Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions. Nature. 2010; 467: 612-616. Ref.: https://goo.gl/K9F8jz
  22. Delarue M, Poterszman A, Nikonov S, Garber M, Moras D, et al. Crystal structure of a prokaryotic aspartyl tRNA-synthetase. EMBO J. 1994; 13: 3219-3229. Ref.: https://goo.gl/nMrB2j
  23. Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, et al. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science. 1991; 252: 1682-1689. Ref.: https://goo.gl/cbVSUq
  24. Fischer F, Huot JL, Lorber B, Diss G, Hendrickson TL, et al. The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code. Nucleic Acids Res. 2012; 40: 4965-4976. Ref.: https://goo.gl/DqM04x
  25. Decicco CP, Nelson DJ, Luo Y, Shen L, Horiuchi KY, et al. Glutamyl-γ-boronate Inhibitors of Bacterial Glu-tRNAGln Amidotransferase. Bioorg Med Chem Lett. 2001; 11: 2561-2564. Ref.: https://goo.gl/LsO5SH
  26. Harpel MR, Horiuchi KY, Luo Y, Shen L, Jiang W, et al. Mutagenesis and mechanism-based inhibition of Streptococcus pyogenes Glu-tRNAGln amidotransferase implicate a serine-based glutaminase site. Biochemistry. 2002; 41: 6398-6407. Ref.: https://goo.gl/d60tIG
  27. Horiuchi KY, Harpel MR, Shen L, Luo Y, Rogers KC, et al. Mechanistic studies of reaction coupling in Glu-tRNAGln amidotransferase. Biochemistry. 2001; 40: 6450-6457. Ref.: https://goo.gl/o5rygn
  28. Moser J, Lorenz S, Hubschwerlen C, Rompf A, Jahn D. Methanopyrus kandleri glutamyl-tRNA reductase. J Biol Chem. 1999; 274: 30679-30685. Ref.: https://goo.gl/3Qr3zM
  29. Huot JL, Balg C, Jahn D, Moser J, Emond A, et al. Mechanism of a GatCAB amidotransferase: aspartyl-tRNA synthetase increases its affinity for Asp-tRNA(Asn) and novel aminoacyl-tRNA analogues are competitive inhibitors. Biochemistry. 2007; 46: 13190-13198. Ref.: https://goo.gl/4TsUWh
  30. Balg C, Huot JL, Lapointe J, Chenevert R. Inhibition of Helicobacter pylori aminoacyl-tRNA amidotransferase by puromycin analogues. J Am Chem Soc. 2008; 130: 3264-3265. Ref.: https://goo.gl/zBSNkv
  31. Balg C, De Mieri M, Huot JL, Blais SP, Lapointe J, et al. Inhibition of Helicobacter pylori aminoacyl-tRNA amidotransferase by chloramphenicol analogs. Bioorg Med Chem. 2010; 18: 7868-7872. Ref.: https://goo.gl/Yy2Kd4
  32. Schlunzen F, Zarivach R, Harms J, Bashan A, Tocilj A, et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature. 2001; 413: 814-821. Ref.: https://goo.gl/56Oe4A
  33. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000; 289: 920-930. Ref.: https://goo.gl/MSrl7m
  34. Pham VH, Maaroufi H, Balg C, Blais SP, Messier N, et al. Inhibition of Helicobacter pylori Glu-tRNAGln amidotransferase by novel analogues of the putative transamidation intermediate. FEBS Lett. 2016; 590: 3335-3345. Ref.: https://goo.gl/N6HIkv
  35. Klinchan C, Yu-Ling H, Chiang LL, Pluempanupat W, Chuawong P. Synthesis of non-hydrolyzable substrate analogs for Asp-tRNAAsn/Glu-tRNAGln amidotransferase. Tetrahedron Letters. 2014; 55: 6204-6207. Ref.: https://goo.gl/j5Gn5W
  36. Pham VH, Maaroufi H, Levesque RC, Lapointe J. Cyclic peptides identified by phage display are competitive inhibitors of the tRNA-dependent amidotransferase of Helicobacter pylori. Peptides. 2016; 79: 8-15. Ref.: https://goo.gl/1Oej07
  37. Söll D, Schimmel PR. 15.Aminoacyl-tRNA Synthetases. The Enzymes. 1974; 489-538. Ref.: https://goo.gl/mY4Bj9
  38. Nissen P, Thirup S, Kjeldgaard M, Nyborg J. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure. 1999; 7: 143-156. Ref.: https://goo.gl/0NwJ0J
  39. Stepanov VG, Nyborg J. Thermal stability of aminoacyl-tRNAs in aqueous solutions. Extremophiles. 2002; 6: 485-490. Ref.: https://goo.gl/JquM6u

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?