Abstract

Research Article

Phylogenetic analysis of metalloprotease from transcriptome of venom gland of Hemiscorpius lepturus

Fatemeh Kazemi-Lomedasht*, Delavar Shahbazzadeh and Mahdi Behdani

Published: 05 February, 2019 | Volume 3 - Issue 1 | Pages: 006-010

Hemiscorpius lepturusis a dangerous scorpion and referred to health concern issue in Khuzestan, Iran. The venom of H.lepturus is cytotoxic and its effect is similar to spider Loxosceles reclusa. Metalloproteinases are the important class of enzymes in the venom that has hemorrhagic activity. The early finding suggests the existence of metalloproteases in the transcriptome of venom gland of H.lepturus. Phylogenetic analysis was accomplished to reveal the evolutionary relationship of identified metalloproteases. The phylogenetic tree was constructed by Molecular Evolutionary Genetics Analysis software and neighbor-joining method. Results showed among three sequences, two metalloproteinases named HLMP1 and HLMP3 of H.lepturus were most close to spider P. tepidariorum. The third sequence named HLMP2 was different and formed an independent clade in the phylogenetic tree. The results suggest that the sequence of metalloproteases in the venom component of H.lepturus is similar to the spider than the scorpion.

Read Full Article HTML DOI: 10.29328/journal.abb.1001014 Cite this Article Read Full Article PDF

Keywords:

Hemiscorpius lepturus; Venom component; Phylogeny; Metalloproteinases; Iranian scorpion

References

  1. Jalali A, Pipelzadeh MH, Sayedian R, Rowan E. A review of epidemiological, clinical and in vitro physiological studies of envenomation by the scorpion Hemiscorpius lepturus(Hemiscorpiidae) in Iran. Toxicon. 2010; 55, 173-179. Ref.: https://goo.gl/zCWt8B
  2. Srairi-Abid N, Shahbazzadeh D, Chatti I, Mlayah-Bellalouna S, Mejdoub H, et al. Hemitoxin, the first potassium channel toxin from the venom of the Iranian scorpion Hemiscorpius lepturus. FEBS J. 2008; 275, 4641-4650. Ref.: https://goo.gl/q6K6iW
  3. Shahbazzadeh D, Srairi-Abid N, Feng W, Ram N, Borchani L, et al. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem J. 2007; 404, 89-96. Ref.: https://goo.gl/EUWiJD
  4. Borchani L, Sassi A, Shahbazzadeh D, Strub JM, Tounsi-Guetteti H, et al. Heminecrolysin, the first hemolytic dermonecrotic toxin purified from scorpion venom. Toxicon. 2011; 58: 130-139. Ref.: https://goo.gl/CF2HhS
  5. Jridi I, Catacchio I, Majdoub H, Shahbazeddah D, El Ayeb M, et al. Hemilipin, a novel Hemiscorpius lepturusvenom heterodimeric phospholipase A2, which inhibits angiogenesis in vitro and in vivo. Toxicon. 2015; 105: 34-44. Ref.: https://goo.gl/pavzMB
  6. Kazemi-Lomedasht F, Khalaj V, Bagheri KP, Behdani M, Shahbazzadeh D. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus. Toxicon. 2017; 125: 123-130. Ref.: https://goo.gl/oKcbqM
  7. Jahdasani R, Jamnani FR, Behdani M, Habibi-Anbouhi M, Yardehnavi N, et al. Identification of the immunogenic epitopes of the whole venom component of the Hemiscorpius lepturusscorpion using the phage display peptide library. Toxicon. 2016; 124: 83-93. Ref.: https://goo.gl/dmCPUU
  8. Seyedian R, Pipelzadeh MH, Jalali A, Kim E, Lee H, et al. Enzymatic analysis of Hemiscorpius lepturusscorpion venom using zymography and venom-specific antivenin. Toxicon. 2010; 56: 521-525. Ref.: https://goo.gl/NEV5Wi
  9. Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y. Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-β1 release. Biochem J. 1997; 322: 809-814. Ref.: https://goo.gl/5JXeHh
  10. Buckley A. Potential Therapeutic Efficacy of a Novel Metalloproteinase Inhibitor, Extracellular Matrix Protection Factor 1, in Human Osteoarthritic Chondrocyte Primary Cultures. 2016; Ref.: https://goo.gl/Nf3KaR
  11. Kim BJ, Hur JW, Park JS, Kim JH, Kwon TH, et al. Expression of matrix metalloproteinase− 2 and− 9 in human ligamentum flavum cells treated with tumor necrosis factor− α and interleukin-1β. Journal of Neurosurgery: Spine. 2016; 24: 428-435. Ref.: https://goo.gl/ujEXVE
  12. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V, et al. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997; 277: 225-228. Ref.: https://goo.gl/5gtZRb
  13. Rudolph-Owen LA, Chan R, Muller WJ, Matrisian LM. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 1998; 58: 5500-5506. Ref.: https://goo.gl/emSDLZ
  14. Azofeifa-Cordero G, Arce-Estrada V, Flores-Díaz M, Alape-Girón A. Immunization with cDNA of a novel P-III type metalloproteinase from the rattlesnake Crotalus durissus durissus elicits antibodies which neutralize 69% of the hemorrhage induced by the whole venom. Toxicon. 2008; 52: 302-308. Ref.: https://goo.gl/yp6QcM
  15. Xia X, Ma Y, Xue S, Wang A, Tao J, et al. Cloning and molecular characterization of BumaMPs1, a novel metalloproteinases from the venom of scorpion Buthus martensi Karsch. Toxicon. 2013; 76: 234-238. Ref.: https://goo.gl/y2XLYP
  16. Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. Evolving genes and proteins. 1965; 97: 97-166. Ref.: https://goo.gl/FVAFwU
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28: 2731-2739. Ref.: https://goo.gl/vSwynC
  18. Fox JW1, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008; 275: 3016-3030. Ref.: https://goo.gl/XT6VNb
  19. Hooper NM.. Families of zinc metalloproteases. FEBS lett. 1994; 354: 1-6. Ref.: https://goo.gl/Tc3weV
  20. Ortiz E, Rendón-Anaya M, Rego SC, Schwartz EF, Possani LD. Antarease-like Zn-metalloproteases are ubiquitous in the venom of different scorpion genera. Biochim Biophys Acta. 1840: 2014; 1738-1746. Ref.: https://goo.gl/jXeZxs
  21. Shan LL, Gao JF, Zhang YX, Shen SS, He Y, et al. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J Proteomics. 2016; 138: 83-94. Ref.: https://goo.gl/4qoBDW

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?