Abstract

Research Article

Diagnostic evaluation of nasopharyngeal swab and saliva kits against SARS-CoV-2: Adequate rapid screening is deemed necessary to overcome COVID-19 Pandemic

Muhammad Danish Yaqoob, Muhammad Abdul Ahad Khawaja, Qurat-ul-Ain Amjad, Atika Waseem, Kashmala Kanwal, Haleema Nadeem, Madiha Munir, Syeda Mushiat Zahra, Zahra Zahid Piracha and Umar Saeed*

Published: 16 September, 2022 | Volume 6 - Issue 1 | Pages: 010-013

SARS-CoV-2 is the virus associated with the disease called COVID-19 and become a global pandemic. The only way to prevent its severe scenarios is through timely and rapid testing. In comparison to more time taking gold-standard RT-PCR testing, rapid diagnostic kits are used. For better prevention and diagnosis of SARS-CoV-2, the analysis of rapid diagnostic kits' accuracy and specificity is necessary. This study is meant to assess and examine the viability, responsiveness, and explicitness of quick antigen distinguishing nasopharyngeal swabs (NPS), and saliva-based units. The study was conducted on 200 suspected COVID-19 patients from Islamabad, 100 of which were RT-PCR positive while 100 were RT-PCR negative. For the analysis of Rapid diagnostic COVID-19 kits (RDT), nasopharyngeal swabs (NPS) and saliva samples were taken from the RT-PCR positive and negative patients. Among 100 RT-PCR positive patients, 62% were males (19 - 91 years), 34% were females (20 - 78 years) and 4% were children (6 - 17 years). False-negative results were significantly more observed in saliva-based RDTs of the sample (49%) as compared to nasopharyngeal swab RDT (38%). There were 2% invalid results in saliva-based RDT and 3% invalid results in Nasopharyngeal swab RDT. While among 100 RT-PCR negative patients 69% were males (19 - 80 yrs), 27% were females (18 - 77 yrs) and 4% were children (12 - 16 yrs.). False positive results were significantly more in saliva-based RDT (22%) as compared to Nasopharyngeal swab RDT (13%). The sensitivity and specificity of saliva-based RDT were 67% and 87% respectively while that of Nasopharyngeal swab (NPS) was 72% and 82% respectively, both of which were less than the gold standard RT-PCR sensitivity demanding the introduction of more sensitive RDT kits in Pakistan for accurate detection of COVID-19.

Read Full Article HTML DOI: 10.29328/journal.abb.1001032 Cite this Article Read Full Article PDF

Keywords:

SARS-CoV-2; COVID-19; PCR; RDT kits; Nasopharyngeal swab; Saliva-based kits

References

  1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273. doi: 10.1038/s41586-020-2012-7. Epub 2020 Feb 3. PMID: 32015507; PMCID: PMC7095418.
  2. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3. Erratum in: Nature. 2020 Apr;580(7803):E7. PMID: 32015508; PMCID: PMC7094943.
  3. World Health Organization Coronavirus Disease 2019 (COVID-19) Situation Report-97. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200426-sitrep-97-covid-19.pdf
  4. Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang CB, Bernardini S. The COVID-19 pandemic. Crit Rev Clin Lab Sci. 2020 Sep;57(6):365-388. doi: 10.1080/10408363.2020.1783198. Epub 2020 Jul 9. PMID: 32645276.
  5. Worldometers COVID-19. Available at https://www.worldometers.info/coronavirus/
  6. WHO Coronavirus disease 2019 COVID-19 Situation report - 184 2020. World Health Organization Accessed July 23, 2020.
  7. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020 Apr;26(4):450-452. doi: 10.1038/s41591-020-0820-9. PMID: 32284615; PMCID: PMC7095063.
  8. Nao N, Yamagishi J, Miyamoto H, Igarashi M, Manzoor R, Ohnuma A, Tsuda Y, Furuyama W, Shigeno A, Kajihara M, Kishida N, Yoshida R, Takada A. Genetic Predisposition To Acquire a Polybasic Cleavage Site for Highly Pathogenic Avian Influenza Virus Hemagglutinin. mBio. 2017 Feb 14;8(1):e02298-16. doi: 10.1128/mBio.02298-16. PMID: 28196963; PMCID: PMC5312086.
  9. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3. Erratum in: Nature. 2020 Apr;580(7803):E7. PMID: 32015508; PMCID: PMC7094943.
  10. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020 Feb 22;395(10224):565-574. doi: 10.1016/S0140-6736(20)30251-8. Epub 2020 Jan 30. PMID: 32007145; PMCID: PMC7159086.
  11. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, Hastie KM, Parker MD, Partridge DG, Evans CM, Freeman TM, de Silva TI; Sheffield COVID-19 Genomics Group, McDanal C, Perez LG, Tang H, Moon-Walker A, Whelan SP, LaBranche CC, Saphire EO, Montefiori DC. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020 Aug 20;182(4):812-827.e19. doi: 10.1016/j.cell.2020.06.043. Epub 2020 Jul 3. PMID: 32697968; PMCID: PMC7332439.
  12. Kumar N, Shahul Hameed SK, Babu GR, Venkataswamy MM, Dinesh P, Kumar Bg P, John DA, Desai A, Ravi V. Descriptive epidemiology of SARS-CoV-2 infection in Karnataka state, South India: Transmission dynamics of symptomatic vs. asymptomatic infections. EClinicalMedicine. 2021 Feb;32:100717. doi: 10.1016/j.eclinm.2020.100717. Epub 2021 Jan 6. PMID: 33521608; PMCID: PMC7831811.
  13. Procop GW, Brock JE, Reineks EZ, Shrestha NK, Demkowicz R, Cook E, Ababneh E, Harrington SM. A Comparison of Five SARS-CoV-2 Molecular Assays With Clinical Correlations. Am J Clin Pathol. 2021 Jan 4;155(1):69-78. doi: 10.1093/ajcp/aqaa181. PMID: 33015712; PMCID: PMC7665304.
  14. Garg A, Ghoshal U, Patel SS, Singh DV, Arya AK, Vasanth S, Pandey A, Srivastava N. Evaluation of seven commercial RT-PCR kits for COVID-19 testing in pooled clinical specimens. J Med Virol. 2021 Apr;93(4):2281-2286. doi: 10.1002/jmv.26691. Epub 2020 Dec 17. PMID: 33230819; PMCID: PMC7753435.
  15. Ezzikouri S, Nourlil J, Benjelloun S, Kohara M, Tsukiyama-Kohara K. Coronavirus disease 2019-Historical context, virology, pathogenesis, immunotherapy, and vaccine development. Hum Vaccin Immunother. 2020 Dec 1;16(12):2992-3000. doi: 10.1080/21645515.2020.1787068. Epub 2020 Aug 5. PMID: 32755425; PMCID: PMC8641599.
  16. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen HL, Peiris M, Wu J. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020 Mar 19;382(12):1177-1179. doi: 10.1056/NEJMc2001737. Epub 2020 Feb 19. PMID: 32074444; PMCID: PMC7121626.
  17. Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020 Jun 25;58(7):1070-1076. doi: 10.1515/cclm-2020-0285. PMID: 32172228.
  18. Laboratory biosafety guidance related to the novel coronavirus (2019-nCoV). Interim guidance. 2020. Available at https://www.who.int/docs/default-source/coronavir-use/laboratory-biosafety-novel-coronavirus-version-1-1.pdf?
  19. Pallett SJC, Rayment M, Patel A, Fitzgerald-Smith SAM, Denny SJ, Charani E, Mai AL, Gilmour KC, Hatcher J, Scott C, Randell P, Mughal N, Jones R, Moore LSP, Davies GW. Point-of-care serological assays for delayed SARS-CoV-2 case identification among health-care workers in the UK: a prospective multicentre cohort study. Lancet Respir Med. 2020 Sep;8(9):885-894. doi: 10.1016/S2213-2600(20)30315-5. Epub 2020 Jul 24. Erratum in: Lancet Respir Med. 2020 Jul 30;: PMID: 32717210; PMCID: PMC7380925.
  20. Xu R, Cui B, Duan X, Zhang P, Zhou X, Yuan Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int J Oral Sci. 2020 Apr 17;12(1):11. doi: 10.1038/s41368-020-0080-z. PMID: 32300101; PMCID: PMC7162686.
  21. Fakheran O, Dehghannejad M, Khademi A. Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: a scoping review. Infect Dis Poverty. 2020 Jul 22;9(1):100. doi: 10.1186/s40249-020-00728-w. PMID: 32698862; PMCID: PMC7374661.
  22. To KK, Tsang OT, Yip CC, Chan KH, Wu TC, Chan JM, Leung WS, Chik TS, Choi CY, Kandamby DH, Lung DC, Tam AR, Poon RW, Fung AY, Hung IF, Cheng VC, Chan JF, Yuen KY. Consistent Detection of 2019 Novel Coronavirus in Saliva. Clin Infect Dis. 2020 Jul 28;71(15):841-843. doi: 10.1093/cid/ciaa149. PMID: 32047895; PMCID: PMC7108139.
  23. Fakheran O, Dehghannejad M, Khademi A. Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: a scoping review. Infect Dis Poverty. 2020 Jul 22;9(1):100. doi: 10.1186/s40249-020-00728-w. PMID: 32698862; PMCID: PMC7374661.
  24. Saeed U, Kim J, Piracha ZZ, Kwon H, Jung J, Chwae YJ, Park S, Shin HJ, Kim K. Parvulin 14 and Parvulin 17 Bind to HBx and cccDNA and Upregulate Hepatitis B Virus Replication from cccDNA to Virion in an HBx-Dependent Manner. J Virol. 2019 Mar 5;93(6):e01840-18. doi: 10.1128/JVI.01840-18. PMID: 30567987; PMCID: PMC6401437.
  25. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brünink S, Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020 May;581(7809):465-469. doi: 10.1038/s41586-020-2196-x. Epub 2020 Apr 1. Erratum in: Nature. 2020 Dec;588(7839):E35. PMID: 32235945.
  26. Piracha ZZ, Kwon H, Saeed U, Kim J, Jung J, Chwae YJ, Park S, Shin HJ, Kim K. Sirtuin 2 Isoform 1 Enhances Hepatitis B Virus RNA Transcription and DNA Synthesis through the AKT/GSK-3β/β-Catenin Signaling Pathway. J Virol. 2018 Oct 12;92(21):e00955-18. doi: 10.1128/JVI.00955-18. PMID: 30111572; PMCID: PMC6189494.
  27. Piracha ZZ, Saeed U, Kim J, Kwon H, Chwae YJ, Lee HW, Lim JH, Park S, Shin HJ, Kim K. An Alternatively Spliced Sirtuin 2 Isoform 5 Inhibits Hepatitis B Virus Replication from cccDNA by Repressing Epigenetic Modifications Made by Histone Lysine Methyltransferases. J Virol. 2020 Jul 30;94(16):e00926-20. doi: 10.1128/JVI.00926-20. PMID: 32493816; PMCID: PMC7394897.
  28. Saeed U, Piracha ZZ. Viral outbreaks and communicable health hazards due to devastating foods in Pakistan.World J Virol. 2016 May 12;5(2):82–4.
  29. Saeed U, Piracha ZZ, Manzoor S. Hepatitis C virus induces oxidative stress and DNA damage by regulating DNAPKCs, ATM, ATR and PARP mediated signaling and guards cell from cancerous condition by upregulating RB, P53 and downregulating VEGF. Acta Virol. 2017;61(3):316–23.
  30. Saeed U, Uppal SR, Piracha ZZ, Rasheed A, Aftab Z, Zaheer H, Uppal R. Evaluation of SARS-CoV-2 antigen-based rapid diagnostic kits in Pakistan: formulation of COVID-19 national testing strategy. Virol J. 2021 Feb 13;18(1):34.

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?