Abstract

Research Article

Effect of Methyl Jasmonate on the Expression of Transcription Factors in Wild Jujube Seedlings under Salt Stress

Jianing Chen, Guangping Wang, Hanyun Liang, Yan Zhao, Xin Gao, Xiankuan Li* and Jian Zhang*

Published: 08 April, 2024 | Volume 8 - Issue 1 | Pages: 003-008

Methyl Jasmonate (MeJA) can be used as a signal molecule to regulate the expression of resistance genes in the resistance to abiotic stress, thus improving the salt tolerance of wild jujube. Among the resistance genes combined with methyl jasmonate, transcription factors play an important role in response to salt stress. However, the interaction of transcription factors in different tissues under salt stress and the regulation of transcription factors by MeJA remain unclear. In this study, the effects of MeJA on transcription factor expression in wild jujube under salt stress were investigated, and the differences in transcription factor expression among different tissues were compared. It was found that MeJA could increase the type and quantity of transcription factors responding to salt stress. The types of transcription factors responding to salt stress were roughly the same among different tissues, but the quantity and expression of the transcription factors were significantly different. The results of transcription factor co-expression analysis showed that transcription factors play synergistic roles in the face of abiotic stress, which can provide preferable genes for subsequent transgenic work.

Read Full Article HTML DOI: 10.29328/journal.abb.1001038 Cite this Article Read Full Article PDF

Keywords:

Ziziphus jujuba var. spinosa; Transcription factor; Methyl Jasmonate

References

  1. Tuteja N. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 2007;428:419-38. doi: 10.1016/S0076-6879(07)28024-3. PMID: 17875432.
  2. Bi C, Yu Y, Dong C, Yang Y, Zhai Y, Du F, Xia C, Ni Z, Kong X, Zhang L. The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat. Plant Biotechnol J. 2021 Feb;19(2):209-211. doi: 10.1111/pbi.13453. Epub 2020 Aug 13. PMID: 32702168; PMCID: PMC7868967.
  3. Li M, Wu Z, Gu H, Cheng D, Guo X, Li L, Shi C, Xu G, Gu S, Abid M, Zhong Y, Qi X, Chen J. AvNAC030, a NAC Domain Transcription Factor, Enhances Salt Stress Tolerance in Kiwifruit. Int J Mol Sci. 2021 Nov 2;22(21):11897. doi: 10.3390/ijms222111897. PMID: 34769325; PMCID: PMC8585034.
  4. Shen L, Zhao E, Liu R, Yang X. Transcriptome Analysis of Eggplant under Salt Stress: AP2/ERF Transcription Factor SmERF1 Acts as a Positive Regulator of Salt Stress. Plants (Basel). 2022 Aug 25;11(17):2205. doi: 10.3390/plants11172205. PMID: 36079586; PMCID: PMC9460861.
  5. Zhao X, Wang Q, Yan C, Sun Q, Wang J, Li C, Yuan C, Mou Y, Shan S. The bHLH transcription factor AhbHLH121 improves salt tolerance in peanut. Int J Biol Macromol. 2024 Jan;256(Pt 2):128492. doi: 10.1016/j.ijbiomac.2023.128492. Epub 2023 Nov 28. PMID: 38035960.
  6. Li L, Zhu Z, Liu J, Zhang Y, Lu Y, Zhao J, Xing H, Guo N. Transcription Factor GmERF105Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana. Plants (Basel). 2023 Aug 21;12(16):3007. doi: 10.3390/plants12163007. PMID: 37631217; PMCID: PMC10459988.
  7. Aliakbari M, Tahmasebi S, Sisakht JN. Jasmonic acid improves barley photosynthetic efficiency through a possible regulatory module, MYC2-RcaA, under combined drought and salinity stress. Photosynth Res. 2024 Jan;159(1):69-78. doi: 10.1007/s11120-023-01074-2. Epub 2024 Feb 8. PMID: 38329704.
  8. Dhaka P, Tallapragada S, Devi S. Implication of Jasmonic Acid on Physiological Alterations on Salt Stressed Fodder Sorghum (Sorghum bicolor L.). International Journal of Environment and Climate Change,2023,13(8):649-660.
  9. Simon N, Hieu TN, Elisabeth E. Jasmonate signaling controls negative and positive effectors of salt stress tolerance in rice.Journal of experimental botany. 2023; 74(10):
  10. Gomez MY, Schroeder MM, Chieb M, McLain NK, Gachomo EW. Bradyrhizobium japonicum IRAT FA3 promotes salt tolerance through jasmonic acid priming in Arabidopsis thaliana. BMC Plant Biology. 2023; 23(1):60-60.
  11. Sheteiwy MS, Ulhassan Z, Qi W, Lu H. Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress#13. Frontiers in Plant Science. 2022;13886862-886862.
  12. Feng RS, Ting TL, Cheng WL. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression#13. Frontiers in Plant Science,2021,12730228-730228.
  13. Jinjing P, Houping W, Qiugui Y. Jasmonate-regulated seed germination and crosstalk with other phytohormones. Journal of experimental botany. 2023; 74(4):1162-1175.
  14. Ma L, Liu X, Lv W, Yang Y. Molecular Mechanisms of Plant Responses to Salt Stress. Front Plant Sci. 2022 Jun 27;13:934877. doi: 10.3389/fpls.2022.934877. PMID: 35832230; PMCID: PMC9271918.
  15. Dong XN, Li MT, Gu HY, Zhu Y, Gu X. Advances in pharmacological effects of jujuboside B. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China Journal of Chinese materia medica. 2023;48(16):4295-4301.
  16. Mei Z, Jinrui L, Yanqing Z. Zizyphi Spinosae Semen: a natural herb resource for treating neurological disorders.[J]. Current topics in medicinal chemistry. 2022; 22(17).
  17. Ali Z, Saeed C, Behnam M. The physiological and pharmacological effects of Ziziphoratenuior L.: A review study. Avicenna journal of phytomedicine. 2022;12(1):16-29.
  18. Bhavanam S, Stout M. Seed Treatment With Jasmonic Acid and Methyl Jasmonate Induces Resistance to Insects but Reduces Plant Growth and Yield in Rice, Oryza sativa. Front Plant Sci. 2021 Aug 16;12:691768. doi: 10.3389/fpls.2021.691768. PMID: 34484259; PMCID: PMC8415220.
  19. Kraus EC, Stout MJ. Seed treatment using methyl jasmonate induces resistance to rice water weevil but reduces plant growth in rice. PLoS One. 2019 Sep 23;14(9):e0222800. doi: 10.1371/journal.pone.0222800. PMID: 31545832; PMCID: PMC6756538.
  20. Chen W, Huang B. Cytokinin or ethylene regulation of heat-induced leaf senescence involving transcriptional modulation of WRKY in perennial ryegrass. Physiol Plant. 2022 Sep;174(5):e13766. doi: 10.1111/ppl.13766. PMID: 36053893.
  21. Song S, Ge M, Wang W, Gu C, Chen K, Zhang Q, Yu Q, Liu G, Jiang J. BpEIN3.1 represses leaf senescence by inhibiting synthesis of ethylene and abscisic acid in Betula platyphylla. Plant Sci. 2022 Aug; 321:111330. doi: 10.1016/j.plantsci.2022.111330. Epub 2022 May 25. PMID: 35696929.
  22. Han, Deguo Xu. Overexpression of MxWRKY53 increased iron and high salinity stress tolerance in Arabidopsis thaliana. In Vitro Cellular Developmental Biology – Plant. 2021; 58(2):1-13.
  23. Fanwei M, Xunmei Z, Jia W. The GRAS protein OsDLA involves in brassinosteroid signalling and positively regulates blast resistance by forming a module with GSK2 and OsWRKY53 in rice. Plant biotechnology journal. 2023; 22(2):363-378.
  24. Balfagón D, Pascual SL, Sengupta S. WRKY48 negatively regulates plant acclimation to a combination of high light and heat stress. The Plant Journal: for Cell and Molecular Biology. 2024.
  25. Xiaolu W, Lulu C, Xinyi L. Integrating physiological and transcriptome analyses clarified the molecular regulation mechanism of PyWRKY48 in poplar under cadmium stress. International Journal of Biological Macromolecules. 2023; 238124072-124072.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?