Abstract

Review Article

Unlocking the Transformative Power of Synthetic Biology

Amaan Arif, Prekshi Garg and Prachi Srivastava*

Published: 18 April, 2024 | Volume 8 - Issue 1 | Pages: 009-016

Artificial Intelligence (AI) combined with Synthetic Biology has the potential to change the way we approach medicine, agriculture, and manufacturing. AI automates tasks, optimizes experimental designs, and predicts biological behaviours, resulting in more efficient design and engineering of biological systems. However, there are challenges such as data limitations, interpretability issues, and ethical considerations like biosafety and biosecurity concerns that need to be addressed. AI can be used to analyze vast amounts of data and identify patterns. This has led to successful applications of AI in high-throughput screening and biomanufacturing, which can drive innovation and address critical challenges. AI-powered closed-loop systems for real-time monitoring and control of biological processes also show promise in providing real-time feedback and optimizing systems on the fly. Despite these advancements, it's important to consider ethical implications to ensure the responsible development and application of AI in synthetic biology. Proper consideration of challenges and ethical considerations can help leverage the power of AI to drive innovation and tackle pressing societal challenges. Overall, the potential of AI in synthetic biology is significant. By addressing challenges and ethical considerations, we can use them effectively to solve pressing problems.

Read Full Article HTML DOI: 10.29328/journal.abb.1001039 Cite this Article Read Full Article PDF

Keywords:

Artificial intelligence; Synthetic biology; CRISPR-Cas9; Predictive modeling; Ethical considerations

References

  1. Benner SA, Sismour AM. Synthetic biology. Nat Rev Genet. 2005 Jul;6(7):533-43. doi: 10.1038/nrg1637. PMID: 15995697; PMCID: PMC7097405.
  2. Parthiban S, Vijeesh T, Gayathri T, Shanmugaraj B, Sharma A, Sathishkumar R. Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals. Front Plant Sci. 2023 Nov 15; 14:1252166. doi: 10.3389/fpls.2023.1252166. PMID: 38034587; PMCID: PMC10684705.
  3. Garner KL. Principles of synthetic biology. Essays Biochem. 2021 Nov 2;65(5):791-811. doi: 10.1042/EBC20200059. PMID: 34693448; PMCID: PMC8578974.
  4. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013 Nov;8(11):2281-2308. doi: 10.1038/nprot.2013.143. Epub 2013 Oct 24. PMID: 24157548; PMCID: PMC3969860.
  5. Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed. 2016 Aug;101(4):213-5. doi: 10.1136/archdischild-2016-310459. Epub 2016 Apr 8. PMID: 27059283; PMCID: PMC4975809.
  6. Bhardwaj A, Kishore S, Pandey DK. Artificial Intelligence in Biological Sciences. Life (Basel). 2022 Sep 14;12(9):1430. doi: 10.3390/life12091430. PMID: 36143468; PMCID: PMC9505413.
  7. Eslami M, Adler A, Caceres RS, Dunn JG, Kelley-Loughnane N, Varaljay VA, Martin GH. Artificial Intelligence for Synthetic Biology. Communications of the ACM. 2022; 65(5):88-97. https://doi.org/10.1145/3500922
  8. Helmy M, Smith D, Selvarajoo K. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab Eng Commun. 2020 Dec; 11:e00149. doi: 10.1016/j.mec.2020.e00149. Epub 2020 Oct 9. Erratum in: Metab Eng Commun. 2021 Oct 28;13:e00186. PMID: 33072513; PMCID: PMC7546651.
  9. García Martín H, Mazurenko S, Zhao H. Special Issue on Artificial Intelligence for Synthetic Biology. ACS Synth Biol. 2024 Feb 16;13(2):408-410. doi: 10.1021/acssynbio.3c00760. Epub 2024 Jan 12. PMID: 38214972.
  10. Liu Z, Wang J, Nielsen J. Yeast synthetic biology advances biofuel production. Curr Opin Microbiol. 2022 Feb; 65:33-39. doi: 10.1016/j.mib.2021.10.010. Epub 2021 Oct 29. PMID: 34739924.
  11. Merzbacher C, Oyarzún DA. Applications of artificial intelligence and machine learning in dynamic pathway engineering. Biochem Soc Trans. 2023 Oct 31;51(5):1871-1879. doi: 10.1042/BST20221542. PMID: 37656433; PMCID: PMC10657174.
  12. Cheng Y, Bi X, Xu Y, Liu Y, Li J, Du G, Lv X, Liu L. Machine learning for metabolic pathway optimization: A review. Comput Struct Biotechnol J. 2023 Mar 27;21: 2381-2393. doi: 10.1016/j.csbj.2023.03.045. PMID: 38213889; PMCID: PMC10781721.
  13. García-Granados R, Lerma-Escalera JA, Morones-Ramírez JR. Metabolic Engineering and Synthetic Biology: Synergies, Future, and Challenges. Front Bioeng Biotechnol. 2019 Mar 4;7: 36. doi: 10.3389/fbioe.2019.00036. PMID: 30886847; PMCID: PMC6409320.
  14. Popescu SM, Mansoor S, Wani OA, Kumar SS, Sharma V, Sharma A, Arya VM, Kirkham MB, Hou D, Bolan N, Chung YS. Artificial intelligence and IoT driven technologies for environmental pollution monitoring and management. Frontiers in Environmental Science. 2024; 12(1336088). https://doi.org/10.3389/fenvs.2024.1336088
  15. Ibn-Mohammed T, Mustapha KB, Abdulkareem M, Fuensanta UA, Pecunia V, Dancer CEJ. Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices. MRS Communications. 2023; 13:795–811. https://doi.org/10.1557/s43579-023-00480-w
  16. Koyamparambath A, Adibi N, Szablewski C, Adibi SA, Sonnemann G. Implementing Artificial Intelligence Techniques to Predict Environmental Impacts: Case of Construction Products. Sustainability. 2022; 14(6):3699. https://doi.org/10.3390/su14063699
  17. Long B, Fischer B, Zeng Y, Amerigian Z, Li Q, Bryant H, Li M, Dai SY, Yuan JS. Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nat Commun. 2022 Jan 27;13(1):541. doi: 10.1038/s41467-021-27665-y. PMID: 35087023; PMCID: PMC8795378.
  18. Shaikhina T, Lowe D, Daga S, Briggs D, Higgins R, Khovanova N. Machine Learning for Predictive Modelling based on Small Data in Biomedical Engineering. IFAC-PapersOnLine. 2015; 48(20):469-474. https://doi.org/10.1016/j.ifacol.2015.10.185
  19. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15. PMID: 34265844; PMCID: PMC8371605.
  20. Marcu ŞB, Tăbîrcă S, Tangney M. An Overview of Alphafold's Breakthrough. Front Artif Intell. 2022 Jun 9; 5:875587. doi: 10.3389/frai.2022.875587. PMID: 35757294; PMCID: PMC9218062.
  21. Varadi M, Bertoni D, Magana P, Paramval U, Pidruchna I, Radhakrishnan M, Tsenkov M, Nair S, Mirdita M, Yeo J, Kovalevskiy O, Tunyasuvunakool K, Laydon A, Žídek A, Tomlinson H, Hariharan D, Abrahamson J, Green T, Jumper J, Birney E, Steinegger M, Hassabis D, Velankar S. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024 Jan 5;52(D1):D368-D375. doi: 10.1093/nar/gkad1011. PMID: 37933859; PMCID: PMC10767828.
  22. Jafari M, Marquez G, Dechiraju H, Gomez M, Rolandi M. Merging machine learning and bioelectronics for closed-loop control of biological systems and homeostasis. Cell Reports Physical Science. 2023; 4(8):101535.
  23. Schöning J, Pfisterer HJ. Safe and Trustful AI for Closed-Loop Control Systems. Electronics. 2023; 12(16):3489. https://doi.org/10.3390/electronics12163489
  24. Jin X, Cai A, Xu T, Zhang X. Artificial intelligence biosensors for continuous glucose monitoring. Interdisciplinary Materials, Review. 2023. https://doi.org/10.1002/idm2.12069
  25. Vidhya KS, Sultana A, M NK, Rangareddy H. Artificial Intelligence's Impact on Drug Discovery and Development from Bench to Bedside. Cureus. 2023 Oct 22;15(10):e47486. doi: 10.7759/cureus.47486. PMID: 37881323; PMCID: PMC10597591.
  26. Stead WW, Patel NR, Starmer JM. Closing the loop in practice to assure the desired performance. Trans Am Clin Climatol Assoc. 2008; 119:185-94; discussion 194-5. PMID: 18596845; PMCID: PMC2394683.
  27. AlZubi AA. Artificial Intelligence and its Application in the Prediction and Diagnosis of Animal Diseases: A Review. Indian Journal of Animal Research. 2023; 57(10):1265-1271. https://doi.org/10.18805/IJAR.BF-1684
  28. Kwon KK, Lee J, Kim H, Lee DH, Lee SG. Advancing high-throughput screening systems for synthetic biology and biofoundry. Current Opinion in Systems Biology. 2024; 37:100487. https://doi.org/10.1016/j.coisb.2023.100487
  29. Beardall WAV, Stan GB, Dunlop MJ. Deep Learning Concepts and Applications for Synthetic Biology. GEN Biotechnol. 2022 Aug 1;1(4):360-371. doi: 10.1089/genbio.2022.0017. Epub 2022 Aug 18. PMID: 36061221; PMCID: PMC9428732.
  30. Amore A, Philip S. Artificial intelligence in food biotechnology: trends and perspectives. Frontiers in Industrial Microbiology. 2023; 1:1255505. https://doi.org/10.3389/finmi.2023.1255505
  31. Holzinger A, Keiblinger K, Holub P, Zatloukal K, Müller H. AI for life: Trends in artificial intelligence for biotechnology. N Biotechnol. 2023 May 25;74:16-24. doi: 10.1016/j.nbt.2023.02.001. Epub 2023 Feb 6. PMID: 36754147.
  32. Sharma A, Gupta G, Ahmad T, Krishan K, Kaur B. Next generation agents (synthetic agents): Emerging threats and challenges in detection, protection, and decontamination. Handbook on Biological Warfare Preparedness. 2020; 217–56. doi: 10.1016/B978-0-12-812026-2.00012-8. Epub 2019 Oct 11. PMCID: PMC7153315.
  33. Christopher MA, LucasC, Guest E. The Operational Risks of AI in Large-Scale Biological Attacks: A Red-Team Approach. Santa Monica, CA: RAND Corporation. 2023. https://www.rand.org/pubs/research_reports/RRA2977-1.html.
  34. van Aken J, Hammond E. Genetic engineering and biological weapons. New technologies, desires and threats from biological research. EMBO Rep. 2003 Jun;4 Spec No(Suppl 1):S57-60. doi: 10.1038/sj.embor.embor860. PMID: 12789409; PMCID: PMC1326447.
  35. Nidhi S, Anand U, Oleksak P, Tripathi P, Lal JA, Thomas G, Kuca K, Tripathi V. Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int J Mol Sci. 2021 Mar 24;22(7):3327. doi: 10.3390/ijms22073327. PMID: 33805113; PMCID: PMC8036902.
  36. Su Z, McDonnell D, Bentley BL, He J, Shi F, Cheshmehzangi A, Ahmad J, Jia P. Addressing Biodisaster X Threats with Artificial Intelligence and 6G Technologies: Literature Review and Critical Insights. J Med Internet Res. 2021 May 25;23(5):e26109. doi: 10.2196/26109. PMID: 33961583; PMCID: PMC8153034.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?